Combinatorial Algebraic Topology Midterm Solutions

1. Give an example of two spaces that are homotopy equivalent but not homeomorphic. (No proof needed.)

2. Describe, with proof, a surjective nullhomotopic map $f: S^n \to S^1$.

Let $p: S^n \to [-1,1]$ be the projection onto the first coordinate, and $g: [-1,1] \to S^1$ be $g(x) = (\cos(x\pi), \sin(x\pi))$. Then $f = g \circ p$ maps S^n surjectively onto S^1 . The function $H: I \times S^n: (t,x) \to g(t \cdot p(x))$ is continuous and restricts on $\{0\} \times S^n$ to the constant function g(0) = (0,0) and on $\{1\} \times S^n$ to f. This shows that f is nullhomotopic.

3. Show that a continuous map $f: S^n \to S^n$ is nullhomotopic if and only if it is homotopic to a continuous map $g: S^n \to S^n$ that is not surjective.

Solution

If it is nullhomotopic then it is homotopic to a constant map which is clearly not surjective, so this direction is clear. For the other, direction, it is enough to find a nullhomotopy of g, as the relation of being homotopic is an equivalence. This is simple. The map g misses some point x_0 , we may assume x_0 is $(1,0,0,\ldots,0)$. The stereographic projection s of $S^n \setminus \{x_0\}$ onto \mathbb{R}^n is thus a well defined homeomorphism. Letting $H: I \times \mathbb{R}^n \to \mathbb{R}^n$ be the standard deformation retraction of \mathbb{R}^n to the origin, the composition

$$I \times S^n \xrightarrow{\operatorname{id} \times g} I \times S^n \xrightarrow{\operatorname{id} \times s} I \times \mathbb{R}^n \xrightarrow{H} \mathbb{R}^n \xrightarrow{S^{-1}} S^n$$

is a homotopy of g to the constant map to $(-1, 0, 0, \dots 0)$.

Extra: The stereoprojection s maps x in $S^n \setminus x_0$ to the intersection of the ray from x_0 to x with \mathbb{R}^n . The standard deformation retraction H of \mathbb{R}^n to the origin is $H: (t, x) \mapsto t \cdot (0, 0, \ldots, 0) + (t - 1)x$. 4. Let $A = S^1$, $B' = \{(x, 0) \mid x \in [-1, -2]\}$ and $B = A \cup B'$.

Find continuous maps $f : A \to B$ and $g : B \to A$ and use them to show that A and B are homotopy equivalent. (This might take some time. If you describe the maps f and g now, you may hand in the proof of homotopy equivalence next Tuesday.)

Solution

Let $z : I \to B$ be a continuous injection of I to B that takes 0 to (0, 1), 1/4 to (1, 0), 1/2 to (0, -1) and 1 to (0, -2). (Explicitly, we could take $z : I \to B$ be defined as follows. Let $z(t) = (\cos 2\pi \cdot t, \sin 2\pi \cdot t)$ for $t \le 1/2$ and z(t) = (-2t, 0) for $t \ge 1/2$.) Let $f_t : A \to B$ be defined for $t \in [1, 2]$ by $f_t((x, y)) = z(t \times z^{-1}((x, y)))$, if $y \ge 0$ and to be the reflection of $f_t((x, -y))$ in y = 0 if y < 0. Observe that f_2 is a surjection onto B, and $f_1 = \operatorname{id}_A$. Let $f = f_2$. Let $g : B \to A$ be the identity on A and take B' to (-1, 0). . Now $g \circ f_t$ agrees with f_t on A for any t, so $H : [1, 2] \times A \to A : (t, x) \to g \circ f_t$ is a homotopy of $g \circ f_1 = \operatorname{id}_A$ to the map $g \circ f_2 = g \circ f$. On the other hand $f_1 \circ g = \operatorname{id}_A H : [1, 2] \times B : (t, x) \to f_t \circ g(x)$ is a homotopy of the identity $f_1 \circ g$ to $f_2 \circ g = f \circ g$.

^{5.} Show how many 1-simplices there are in the barycentric subdivision of an n-simplex σ^n .

Solution

The 0-simplices of $\operatorname{sd}(\sigma^n)$ are the non-empty subsets of [n + 1], and two such subsets S, T form a 1-simplex if one is contained in the other. For all $i = 1, \ldots, n$, there are $\binom{n+1}{i}$ subsets of [n + 1] of cardinality i, and each is contained in $2^{(n+1-i)} - 1$ supersets in [n + 1]. So $\operatorname{sd}(\sigma^n)$ has $\sum_{i=1}^n \binom{n+1}{i} (2^{(n+1-i)} - 1)$ one simplices. (Bonus points if you get it in a nicer form than I did.)

(If you can't answer the question above, answer the following for partial marks)

5' (a) How many 1-simplices are there in a 3-simplex.

- (b) Draw the barycentric subdivision of a 2-simplex.
- (c) How many 0-simplices are there in the barycentric subdivision of a 3 simplex.

(d) How many 1-simplices are there in the barycentric subdivision of a 3-simplex.

enumerate

(e) Prove that the diameter of a simplex σ is the distance between some two vertices of σ .

- (f) Show the equivalence of the following two versions of the Borsuk Ulam Theorem.
- [BU2a] There is no continuous antipodal mapping $f:S^n\to S^{n-1}.$
- [Bu2b] There is no continuous mapping $g: B^n \to S^{n-1}$ that is antipodal on the boundary.

(g) State Tucker's Lemma (any version) and show that it is implied by the Borsuk Ulam Theorem.

