
Combinatorial Algebraic Topology
Midterm Solutions

1. Give an example of two spaces that are homotopy equivalent but not
homeomorphic. ( No proof needed. )

The spaces from question 4!

Solution

2. Describe, with proof, a surjective nullhomotopic map f : Sn → S1.

Let p : Sn → [−1, 1] be the projection onto the first coordinate, and

g : [−1, 1] → S1 be g(x) = (cos(xπ), sin(xπ)). Then f = g ◦ p maps Sn

surjectively onto S1. The function H : I × Sn : (t, x)→ g(t · p(x)) is contin-

uous and restricts on {0} × Sn to the constant function g(0) = (0, 0) and on

{1} × Sn to f . This shows that f is nullhomotopic.
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3. Show that a continuous map f : Sn → Sn is nullhomotopic if and only if
it is homotopic to a continuous map g : Sn → Sn that is not surjective.

If it is nullhomotopic then it is homotopic to a constant map which is clearly
not surjective, so this direction is clear. For the other, direction, it is enough to
find a nullhomotopy of g, as the relation of being homotopic is an equivalence.
This is simple. The map g misses some point x0, we may assume x0 is
(1, 0, 0, . . . , 0). The stereographic projection s of Sn \ {x0} onto Rn is thus
a well defined homeomorphism. Letting H : I × Rn → Rn be the standard
deformation retraction of Rn to the origin, the composition

I × Sn id×g−→ I × Sn id×s−→ I × Rn H−→ Rn s−1

−→ Sn

is a homotopy of g to the constant map to (−1, 0, 0, . . . 0).

Extra: The stereoprojection s maps x in Sn \x0 to the intersection of the ray

from x0 to x with Rn. The standard deformation retraction H of Rn to the

origin is H : (t, x) 7→ t · (0, 0, . . . , 0) + (t− 1)x.
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4. Let A = S1, B′ = {(x, 0) | x ∈ [−1,−2]} and B = A ∪B′.

Find continuous maps f : A → B and g : B → A and use them to show
that A and B are homotopy equivalent. (This might take some time.
If you describe the maps f and g now, you may hand in the proof of
homotopy equivalence next Tuesday.)

Let z : I → B be a continuous injection of I to B that takes 0 to (0, 1),
1/4 to (1, 0), 1/2 to (0,−1) and 1 to (0,−2). (Explicitly, we could take
z : I → B be defined as follows. Let z(t) = (cos 2π · t, sin 2π · t) for t ≤ 1/2
and z(t) = (−2t, 0) for t ≥ 1/2. )

Let ft : A→ B be defined for t ∈ [1, 2] by

ft((x, y)) = z(t× z−1((x, y))),

if y ≥ 0 and to be the reflection of ft((x,−y)) in y = 0 if y < 0. Observe that
f2 is a surjection onto B, and f1 = idA. Let f = f2.

Let g : B → A be the identity on A and take B′ to (−1, 0). .

Now g ◦ft agrees with ft on A for any t, so H : [1, 2]×A→ A : (t, x)→ g ◦ft
is a homotopy of g ◦ f1 = idA to the map g ◦ f2 = g ◦ f .

On the other hand f1 ◦g = idA H : [1, 2]×B : (t, x)→ ft ◦g(x) is a homotopy
of the identity f1 ◦ g to f2 ◦ g = f ◦ g.
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5. Show how many 1-simplices there are in the barycentric subdivision of an
n-simplex σn.



The 0-simplices of sd(σn) are the non-empty subsets of [n + 1], and two
such subsets S, T form a 1-simplex if one is contained in the other. For all
i = 1, . . . , n, there are

(n+1
i

)
subsets of [n + 1] of cardinality i, and each is

contained in 2(n+1−i) − 1) supersets in [n+ 1].
So sd(σn) has

n∑
i=1

(n+ 1

i

)
(2(n+1−i) − 1)

one simplices. (Bonus points if you get it in a nicer form than I did.)
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(If you can’t answer the question above, answer the following for partial
marks)

5’ (a) How many 1-simplices are there in a 3-simplex.

6
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(b) Draw the barycentric subdivision of a 2-simplex.

(c) How many 0-simplices are there in the barycentric subdivision of a 3
simplex.

24 − 1 = 15.
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(d) How many 1-simplices are there in the barycentric subdivision of a
3-simplex.

50

Solution

enumerate

(e) Prove that the diameter of a simplex σ is the distance between some
two vertices of σ.

You’ve all seen the solution to this.

Solution



(f) Show the equivalence of the following two versions of the Borsuk
Ulam Theorem.

[BU2a ] There is no continuous antipodal mapping f : Sn → Sn−1.

[Bu2b ] There is no continuous mapping g : Bn → Sn−1 that is antipo-
dal on the boundary.

In the text.
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(g) State Tucker’s Lemma (any version) and show that it is implied by
the Borsuk Ulam Theorem.

In the text.
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