Combinatorial Algebraic Topology - Extra Notes

ver .September 25, 2012

This is additional notes for a class taught from Matousek’s ‘Using the Borsuk-
Ulam Theorem’. The text assumes a working familiarity with topological ideas.
This gives some examples to fill in a lack of such familiarity.

1 Chapter 1

Topological spaces are mostly assumed to be compact subspaces of real spaces,
with the subspace metric topology. So continuity of a function can be defined
with £ and 4.

Definition 1.1. A function f : X — Y is continuous if for all x € X and all
€ > 0 there exists a § > 0 such that for all 2’ € X,

|z —2'| <6 =|f(x) — f(2')| <e.

[+ X = Y is uniformly continuous if for all € > 0 there exists s a § > 0 such
that for all z, 2’ € X,

|z —2'| <= |f(x) = f(z')| <e.

In compact spaces continuity and uniform continuity are equivalent.

It is clear that if we define a continuous function f : R™ — R™ then this
function restricted to X C R" is also continuous, we can use the same ¢ for any
€.

We recall from calculus that any algebraic function in d variables is contin-
uous on its domain. As are the trigonometric functions. So any function f on
X C R that we define by a polynomial such as f(z,y) = 2%y — 5z +y + 8 is
continuous. In calculus you show that the sum, product and composition of
continuous functions is continuous. Recall how we did such things:

Proposition 1.2. If f : X — Y is continuous and g : Y — Z is continuous,
then so ish=go f: X — Z.

Proof. Tt simplifies the proof to replace ’continuous’ with *uniformly continuous’
in each occurence. For us this is the same.

Let € > 0. As g is uniformly continuous there is dy such that for y,y’ € Y,

ly—y'| <oy = lg(y) —9(¥)| <e.
As f is uniformly continuous, there is § such that for z,2’ € X,

|z — 2’| <0 = |f(z) = f(a)] < y.



So
|z —2'| <d=l|go f(z) —go f(a')| <e.
O

This gives us that such functions as f(z,y) = sin®(z)y — 2z +y/sin(z) are
continuous on their domains. (Look out where sin(z) = 0.)

Further, a function f : R® — R™ such as f(z,y) = (22,yx) is continuous if
and only if its component functions fi(z,y) = 2% and fa(z,y) = yx are.

Try proving this for and f(x,y) = (f1(z,y), f2(z,y)). Recall that for (x,y), (z',y’) €
R2?,
(z,y) = (2, y"))? = |z — 2" + [y — ¢/
If f1: X1 = Y7 and f5: X5 — Y5 are continuous functions, we write f1 X fo
for the continuous function

J1 X fo: X1 x Xo = Y1 x Yo (21,22) = (f1(z1), f2(22)).

One fact that we will use frequently in showing that maps are continuous
is the following, which actually holds for all topological spaces. Section 1.1
Exercise 2 leads you through most of the more general proof. For us it is quite
easy to do it directly though.

A cover of a space X is a family {X;};c of subsets of X whose union is X.

Lemma 1.3 (The Gluing Lemma). Let Ay, ..., A, be cover of closed sets of X.
For each i let f; : A; =Y be a continuous functions such that for all i,j € [n],
fi and f; agree on A; N Aj. Then the function . fi = f: X = Y is well
defined by

flz) = fi(z) ifx € A,

1S continuous.

Proof. Let ¢ > 0, and x € X. Let I C [n] be the set of indices i for which
x € A;. For i € I, we have by the continuity of f; that there is some §; > 0 such
that

Vye A ly—x|<di = |fily) - filz)| <e
= |fly) - f@)| <e.
On the other hand, for j & I, because A; is closed, there is some §; > 0 such

that
ly—z| <é; =y & A,

Let 6 = min,ep,) ;. Then for all y, |y — x| < ¢ implies that [y — x| < d; for
all j € I. So as the A; cover X, y € A; for some ¢ € I. But then |y —z| < § < ;
implies that |f(y) — f(x)] < e.

So f is continuous, as needed. O



1.1 Homotopies

The polynomial function p(t, z) = (1 —t)z+x is very useful in show homotopies
between functions in R™. For example, we can show that the any continuous map
f: X — R™ is homotopic to the constant map ¢; : X - R" :v — (1,1,1,...,1)
by the homotopy

H:IxX >R (t,x)— (1—-t)z+t1,1,...,1).

H is continuous as it H = poid xc¢;. All of p, id and ¢; are continuous, so
id x¢c; is, and the composition with p is too.

As a particular case of this we get that the identity map id; : I — I is
homotopic to the constant map ¢; : R — R.

Here is a picture of H:
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Just for fun lets show in another way that this map H : I x I — [ is
continuous. Cover the space I x I with the lower triangle T; = {(x,y) | z,y >
0,2 —y < 1} and the upper triangle T, we get by reflecting T} in the line
x—y=1. Define f; : T, — I by fi(z,y) =x—y, and f, : T, = I by f, = c1.
Both of these are continuous, and their union f, U f; is H, so by the gluing
lemma, H is continuous.

Another useful function is the the following.

Example 1.4. For ¢ € I = [0,1] let r. : I — I be the reparametrisation of I

given by:
[ t/e ift<c
Tc(t)_{l ift>c

The functions ¢t — ¢/c and t — 1 are both polynomial, so continuous on any
subset of R. In particular on the closed subsets [0, c| and [e, 1] respectivley. By
the Gluing Lemma, r. is therefore continuous.

Now we can show that 7. is null-homtopic by the homotopy H = poid xr..
We know this is continuous, we just have to verify that it defines a map to I.
This is easy.

Here is another way we can show it to be null-homotopic. Let T;, T,,, f; and
fu be as above. Let H : I x I — I be defined by H = r. o f; U f,. This is
continuous. H is slightly different from the H above, but also a homotopy to
Cy.



We know that both id : I — [ and r. : I — I are null-homotopic, so they
are homotopy equivalent, but we can show this directly too, by the homotopy

o= {Tl—t+tc}tel~

Let R, : I* — I® be defined R.(z,y,2) = (re(x),re(y),7(2)). Then this is
continuous as each component function is. It takes any (z,y, z) with all entries ¢
or greater to (1,1,1). Similar to above, Ry_¢ ¢,y is a homotopy from Ry = id
to Re.

It is easy to find a homeomorphism F of the cube I? to the sphere S2%, so
FoR.oF~1:5% 5 §2is a continuous mapping S? — S? which might be useful
in Section 1.2, Exercise 3.

The following describes the map $2 — S? that Kim Se-hun was drawing in
class.

Observe that the unit 2-sphere S? = {z € R? | |x| = 1} can be parametrised
as

S ={p(0,¢)|0c2r-I,pcm-1I}
where p(0, ¢) = (sin(¢) cos(), sin(¢) sin(6), cos(¢)).
Then the map

fo:8% = 5%:p(0,0) = p0,7-r.(p/T))

is continuous. To show this is continuous we use the following fact. It is about
what are called quotient spaces.

Proposition 1.5. Let f : X — Y be continuous, and q : X — Q be a a
continuous surjection such that f is constant on ¢~*(z2) for all z € Q. . Then
fla:Q—Y :x— foq ! is well-defined and continuous.

Now Fo:2n-Ixm-1—S%:(0,¢0) — p(0,7-r.(¢/7)) is continuous as its
component maps are compositions of continuous maps.

Moreover f. = F¢/p, so by the proposition f. is continuous.



